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Abstract

Magic echo cycles are introduced for performing quadrupolar echo spectroscopy of spin-1 nuclei. An analysis is performed via aver-
age Hamiltonian theory showing that the evolution under chemical shift or static field inhomogeneity can be refocused simultaneously
with the quadrupolar interaction using these cycles. Due to the higher convergence in the Magnus expansion, with sufficient RF power,
magic echo based quadrupolar echo spectroscopy outperforms the conventional two pulse quadrupolar echo in signal to noise. Exper-
iments highlighting a signal to noise enhancement over the entire bandwidth of the quadrupolar pattern of a powdered sample of deu-
terated polyethelene are shown.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

One of the most intriguing effects in nuclear magnetic
resonance is the refocusing of the time evolution of a
nuclear spin system with a suitable RF pulse cycle—the
creation of a spin echo. In the language of average Hamil-
tonian theory, developed by Waugh and coworkers, the
refocusing of a spin system occurs when the effective Ham-
iltonian of a given pulse train is zero [1]. This can be illus-
trated by considering the evolution of the initial state of a
spin, jw(t = 0)æ, to the final state jw(t = T)æ under the effec-
tive Hamiltonian, Heff. When Heff is made zero by clever
design of the RF pulse train, the state at t = T is made
equal to that at t = 0, and the dynamics have been refo-
cused. For quadrupolar spins of a solid, a spin echo allows
for spectroscopy of a broad spectral pattern that would
otherwise be distorted due to the ring-down of the RF coil.
The experimental method involves acquiring the peak of an
echo, which in the absence of relaxation and experimental
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artifacts, would yield the same signal as a free induction
decay.

Arguably the most challenging experimental require-
ment to overcome in quadrupolar echo spectroscopy of a
solid is the uniform excitation of the entire bandwidth of
the spin system, which can often cover 200 kHz. Composite
pulses developed for this purpose were shown to produce
more uniformly excited spectra than spectra acquired with
a conventional hard pulse (a single pulse with a single
phase and amplitude) [2]. Under certain experimental con-
ditions, however, the spectrum acquired with a composite
pulse was shown by Siminovich et al. to produce a distor-
tions due to finite pulse width artifacts [3]. This was due to
the fact that the spin system evolves under the quadrupolar
interaction during the RF pulses. In the situation of hard
pulses, a similar distortion is also encountered even when
one uses high power and short pulses on the order of
2 ls. Recently, we reported on a phase cycling scheme that
suppresses spectral artifacts associated with finite pulse
width effects in a conventional quadrupolar echo cycle
[4]. By proper cycling of the transmitter and receiver
phases, distortions introduced by finite pulse widths were
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shown to be significantly suppressed to first order of the
Magnus expansion.

In this work, we report on the application of magic ech-
oes for improved quadrupolar echo spectroscopy of spin
I = 1 nuclei. The magic echo cycle, developed by Rhim
et al. [5] nearly 36 years ago, has been applied with great
success in solid state NMR imaging [6–8], scattering studies
[9,10] and in multiple pulse line-narrowing schemes [11]. A
particularly useful aspect of the cycles presented is their
ability to refocus both chemical shift and static field inho-
mogeneity simultaneous with the quadrupolar interaction.
In addition, with sufficient RF power, the signal to noise
over the entire bandwidth is enhanced in a magic echo cycle
compared to the familiar two pulse quadrupolar echo cycle
due to more efficient convergence of the Magnus expan-
sion. Lastly, the magic echo based cycles are shown to be
robust against finite pulse width artifacts that plague other
cycles used in quadrupolar echo spectroscopy. In the exper-
imental section of this work, we demonstrate these findings
on a sample of powdered deuterated polyethelene.
2. Theory

Consider a solid system of spin I = 1 nuclei subject to a
large, static and homogeneous field. Ignoring any dipolar
coupling and chemical shift, the nuclear spin Hamiltonian
is given by the familiar quadrupolar interaction, which is
written to first order as

HxQ
¼ xQ½12Iz;1Iz;1 � II � ð1Þ

where the spin-1 operator formalism developed by Vega
and Pines has been used [12]. In the above expression

xQ ¼ x0QR2;0

1ffiffiffi
6
p

R2;0 ¼
ffiffiffi
3

2

r h
P 2ðcos hÞ þ g

2

� �
cosð2hÞ sin2ðuÞ

i
x0Q ¼

e2qQ
2Ið2I � 1Þ�h

ð2Þ
Fig. 1. Magic echo sequence for refocusing the quadrupolar, chemical shift H
p/2 pulses have a width of 2a and the phases of all the pulses should be cycled as
is cycle A from Table 1.
where xQ is the quadrupolar coupling constant, P2(cosh) is
the second order Legendre polynomial of cosh, h and u are
two of the three Euler angles.

We consider the evolution of the spin system under the
magic echo pulse sequence shown in Fig. 1, developed by
Rhim et al. [5]. The cycle is already well known in the
NMR community to refocus the dynamics of spin I = 1/2
nuclei coupled by a dipolar interaction as well as chemical
shift or offset Hamiltonians [11]. The sequence consists of a
p
2

pulse about x axis, a period of free evolution of time
s � a, a p

2
pulse about y axis, followed by two spin locking

fields of duration 2s � a, ending with the application of a
second p

2
pulse about y axis. The echo occurs at a time

s � a after the last pulse [5]. Table 1 lists all 16 possible
cycles of a magic echo sequence that create an echo. In
Table 1, the numbers 0, 1, 2 and 3 correspond to the trans-
mitter or receiver phases X, Y, �X and �Y, respectively.
The phase of the receiver in each cycle is set so that the
echo is always detected on either the positive x or y axis.

In the formalism of average Hamiltonian theory, the
time evolution of the system from time t = 0, q(0) to the
state at time t = tc, q(tc) is given by

qðtcÞ ¼ U RFU intqð0ÞU�1
int U

�1
RF ð3Þ

where the propagator URF is given by the Dyson series and
Uint is given by the Magnus expansion [1]. This formalism
will be used to show that the magic echo cycle is more ro-
bust in refocusing the dynamics of spin-1 nuclei coupled by
a quadrupolar interaction compared to the conventional
two pulse echo cycle shown in Fig. 2 with sufficient RF
power. In addition, the magic echo cycle refocuses static
field inhomogeneity and chemical shift simultaneous with
the quadrupolar interaction.

Taking the initial state of the system to be given by
q(0) = Iz,1, we constructed Table 2 and computed the tog-
gling frame quadrupolar Hamiltonian eH xQ

during each
stage of the pulse cycle. Referring to Fig. 1, for the first
time interval 0 6 t 6 s � 2a, URF = 1. For the second
interval, s � 2a 6 t 6 s, the rotation is given by the linear
parametrization:
amiltonian as well as static field inhomogeneity. In this figure, the two
given in Table 1 to suppress deleterious spectral artifacts. The cycle shown



Table 1
Phase cycling table for the magic echo cycle for use in the spin-1
quadrupolar echo experiment

Cycle A B C D E F G H I J K L M N O P

Pulse 1 0 0 0 0 1 1 1 1 2 2 3 3 2 2 3 3
Pulse 2 1 3 0 2 0 2 1 3 1 3 1 3 0 2 0 2
Pulse 3 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1
Pulse 4 2 2 3 3 3 3 2 2 2 2 2 2 3 3 3 3
Pulse 5 1 3 0 2 0 2 1 3 1 3 1 3 0 2 0 2
Receiver phase 3 3 1 1 0 0 2 2 1 1 0 0 3 3 2 2

Fig. 1 shows cycle A from the table above.

π/ π/2x 2y

δ1 δ2 δ3 δ4        δ5     

τ–α τ–ατ–2α2α 2α

Fig. 2. Two pulse echo sequence for refocusing the quadrupolar Ham-
iltonian. In the figure the two p/2 pulses have a width of 2a and the phases
of the two pulses shown can be any combination of 90 deg phase shifted
pulses. The cycle does not refocus chemical shift or static field in
homogeneity.
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h ¼ xRFt ð4Þ

with the constraint

xRF2a ¼ p
2

ð5Þ

where h = 0 at t = 0, and h ¼ p
2

at t = 2a. The same condi-
tion occurs for the fourth and seventh interval respectively,
2s � a 6 t 6 2s + a and 6s � a 6 t 6 6s + a. For the fifth
and sixth intervals, 2s + a 6 t 6 4s and 4s 6 t 6 6s � a,
the parametrization is given by the constraint

ð2s� aÞxRF ¼ np ð6Þ

with n = 1, 2, 3. . .. In the experimental section, we will
comment on how precise this condition is required to be
set by the experimenter in order for the cycles to function
properly.

Table 2 gives the toggling frame Hamiltonians during
each stage of the system evolution that were developed
knowing the transformations of Ix,1, Iy,1 and Iz,1. The
resulting toggling frame Hamiltonians were integrated over
their respective time intervals and are also provided in
Table 2. The zeroth order terms of the Magnus expansion
were calculated for all 16 cycles that can refocus the system
dynamics evolving under Eq. (1), and produce an echo and
are provided in Table 3.

Consider the case of magic echo cycle denoted by A in
Table 1 and shown in Fig. 1. From Table 3 the zeroth order
term of the Magnus expansion is given by



Table 3
Integrated first order terms of the Magnus expansion for the quadrupolar
Hamiltonian for 16 cycles of the magic sandwich based quadrupolar echo
sequence in Fig. 1

Cycle H 0
xQ

A 3
7s

xQ

xRF
Ix;2 þ 4sxQ

7s Ix;1Ix;1 þ 4ð3a�sÞxQ

7s Ix;1 þ 4ð3a�sÞxQ

7s Iy;1Iy;1 þ 4ð3aþsÞxQ

7s Iz;1Iz;1

B 3
7s

xQ

xRF
Ix;2 þ 4ð3a�sÞxQ

7s ½Ix;1Ix;1 þ Iy;1Iy;1 � 2Iz;1Iz;1�
C 3

7s
xQ

xrf
Ix;2 þ 8sxQ

7s Iz;1Iz;1 þ 4ð3a�sÞxQ

7s Iy;1Iy;1 þ 4ð3aþsÞxQ

7s Ix;1Ix;1

D 3
7s

xQ

xrf
Ix;2 þ 8sxQ

7s Iz;1Iz;1 þ 4ð3a�sÞxQ

7s Iy;1Iy;1 þ 4ð3aþsÞxQ

7s Ix;1Ix;1

E �3
7s

xQ

xrf
Iy;2 þ 4ð3a�sÞxQ

7s ½Ix;1Ix;1 þ Iy;1Iy;1 � 2Iz;1Iz;1�
F �3

7s
xQ

xrf
Iy;2 þ 4ð3a�sÞxQ

7s ½Ix;1Ix;1 þ Iy;1Iy;1 � 2Iz;1Iz;1�
G �3

7s
xQ

xRF
Iy;2 þ 8sxQ

7s Iz;1Iz;1 þ 4ð3a�sÞxQ

7s Ix;1Ix;1 � 4ð3aþsÞxQ

7s Iy;1Iy;1

H �3
7s

xQ

xrf
Iy;2 þ 4ð3a�sÞxQ

7s ½Ix;1Ix;1 þ Iy;1Iy;1� þ 8sxQ

7s Iz;1Iz;1

I �3
7s

xQ

xrf
Iy;2 þ 4ð3a�sÞxQ

7s ½Ix;1Ix;1 þ Iy;1Iy;1� þ 8sxQ

7s Iz;1Iz;1

J �3
7s

xQ

xrf
Iy;2 þ 4ð3a�sÞxQ

7s ½Ix;1Ix;1 þ Iy;1Iy;1 � 2Iz;1Iz;1�
K 3

7s
xQ

xrf
Iy;2 þ 8sxQ

7s Iz;1Iz;1 þ 4ð3a�sÞxQ

7s Ix;1Ix;1 � 4ð3aþsÞxQ

7s Iy;1Iy;1

L 3
7s

xQ

xrf
Iy;2 þ 8sxQ

7s Iz;1Iz;1 þ 4ð3a�sÞxQ

7s Ix;1Ix;1 � 4ð3aþsÞxQ

7s Iy;1Iy;1

M �3
7s

xQ

xrf
Ix;2 � 4ð3aþsÞxQ

7s Ix;1Ix;1 þ 4ð3a�sÞxQ

7s Iy;1Iy;1 þ 8sxQ

7s Iz;1Iz;1

N �3
7s

xQ

xrf
Ix;2 � 4ð3aþsÞxQ

7s Ix;1Ix;1 þ 4ð3a�sÞxQ

7s Iy;1Iy;1 þ 8sxQ

7s Iz;1Iz;1

O 3
7s

xQ

xrf
Iy;2 þ 4ð3a�sÞxQ

7s ½Ix;1Ix;1 þ Iy;1Iy;1� þ 8sxQ

7s Iz;1Iz;1

P 3
7s

xQ

xrf
Iy;2 þ 4ð3a�sÞxQ

7s ½Ix;1Ix;1 þ Iy;1Iy;1� þ 8sxQ

7s Iz;1Iz;1

In this table 2xRFa ¼ p
2, where 2a is the p

2 pulse width. xQ is the quadru-
polar coupling constant.
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H 0
xQ
¼ 1

7s
12axQ

p
Ix;2 þ

4ð3a� sÞ
7s

xQ½Ix;1Ix;1 þ Iy;1Iy;1 � 2Iz;1Iz;1�

ð7Þ

Three important findings of this result should be recog-
nized. First, the second term commutes with Iz,1, and as a
consequence does not affect the system dynamics. Second,
the first term is proportional to the finite pulse width and
when a! 0 the first term vanishes. In this situation, the
density matrix at t = 7s, calculated using Eq. (3), is found
to be qA(7s) = Iy,1, which corresponds to the case of perfect
refocusing of the spin system with no additional quantum
coherences present to first order of the Magnus expansion.
Third, the results indicate that the contribution of finite
pulse widths to the system evolution becomes less impor-
tant for large values s.

To further illustrate the contribution of finite pulse
widths in the system evolution, we consider Eq. (3) with
Eq. (7) to determine the state of the spin system at 7s
and the detected signal. The density matrix at 7s for the
magic echo cycle A is found to be

qAð7sÞ ¼ �2A11 cos
3b
8

� �
Iz;2 � 2A11 sin

3b
8

� �
Iz;1

þ A21 cos
3b
8

� �
þ A31 sin

3b
8

� �� �
Iy;1

þ �A31 cos
3b
8

� �
þ A21 sin

3b
8

� �� �
Iy;2 ð8Þ
where

A11 ¼
2a sinh 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�16a2 � 9b2
ph i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�16a2 � 9b2
p

A21 ¼ cosh
1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�16a2 � 9b2

p� �

A31 ¼
3b sinh 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�16a2 � 9b2
ph i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�16a2 � 9b2
p

ð9Þ

and a ¼ 3
xQ

xRF
and b = 4(3a � s)xQ.

In the limiting case when a = 0, the result above reduces
to qA(7s) = Iy,1. This is in agreement with our expectation
in the situation of d-function RF pulses. When a „ 0 the
term Iy,2 does not commute with the quadrupolar
Hamiltonian and as a consequence, it evolves to a detect-
able signal. In certain experimental conditions, it can pro-
duce a spectral distortion as we will now show. Using the
Liouville–Von Neumann equation, the quadrupolar
Hamiltonian in Eq. (1) and qA(7s), the density matrix at
a time t + 7s is found to be

qAðt þ 7sÞ ¼ �2A11 cos

�
3b
8

�
Iz;2 � 2A11 sin

�
3b
8

�
Iz;1

þ
��

A21 cos

�
3b
8

�
þ A31 sin

�
3b
8

��
cosð3xQtÞ

þ
�

A21 sin

�
3b
8

�
� A31 cos

�
3b
8

��
sinð3xQtÞ

�
Iy;1

þ
��
�A21 cos

�
3b
8

�
� A31 sin

�
3b
8

��
sinð3xQtÞ

þ
�

A21 sin

�
3b
8

�
� A31 cos

�
3b
8

��
cosð3xQtÞ

�
Iy;2

ð10Þ

The signal detected for this cycle as a function of time is
formally given by

SignalAð7sþ tÞ ¼ TracefðIx;1 þ iIy;1ÞqAð7sþ tÞg ð11Þ

which reduces to

SignalAð7sþ tÞ

¼ i
��

A21 cos

�
3b
8

�
þ A31 sin

�
3b
8

��
� cosð3xQtÞ þ

�
A21 sin

�
3b
8

�
�A31 cos

�
3b
8

��
sinð3xQtÞ

�
� TracefIy;1ðIx;1 þ iIy;1Þg ð12Þ

In the expression for qA(t + 7s), the term ½ðA21 cosð3b
8
Þþ

A31 sinð3b
8
ÞÞ cosð3xQtÞ þ ðA21 sinð3b

8
Þ � A31 cosð3b

8
ÞÞ sinð3xQtÞ�

multiplying Iy,1 arises from the time evolution of the terms
Iy,1 and Iy,2 in qA(7s). The term cos(3xQt) arises from the
time evolution of the term Iy,1 and is an even function.
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The term sin(3xQt) arises from the time evolution of the
term Iy,2 and is an odd function that vanishes in the case
of delta function RF pulses (a = 0). The detected signal,
which is the term multiplying Iy,1, is a combination of
odd and even functions. The sum of odd and even func-
tions produces a slightly asymmetric spectrum, which
causes one of the peaks of the quadrupolar powder pattern
to be higher than the other. This finding was also reported
recently for a conventional solid echo in spin-1 quadrupo-
lar echo spectroscopy [4]. The asymmetry vanishes in the
limit of a fi 0.

If a strong RF field is applied to the spin system, the
undesirable terms can be made negligible and Eq. (8) will
be proportional to Iy,1. For example, a readily achievable
pulse width of 2a = 2 ls with xQ = 125 kHz and
s = 50 ls under the magic echo cycle generates an Iy,1 term
approximately 2 orders of magnitude larger than Iy,2. With
higher RF power these deleterious terms can be made fur-
ther negligible. A similar calculation can be performed for
the other cycles given in Table 1.

The density matrices at 7s for all 16 possible combina-
tions of phase shifted RF pulses were calculated and are
provided in Table 3, each highlighting the effect of xRF

on the system evolution. We add or subtract the density
matrices of all eight possible combinations of the ME
cycles that produce an echo in the +X direction in the fol-
lowing manner
Table 4
Density matrices at 7s, q(7s), for 16 cycles of the magic sandwich based quadrup
quadrupolar Hamiltonian

Cycle q(7s)

A �2A11 cosð3b
8 ÞIz;2 � 2A11 sinð3b

8 ÞIz;1 þ ½A21 co

B �2A11 cosð3b
8 ÞIz;2 � 2A11 sinð3b

8 ÞIz;1 þ ½A21 co

C �2A12cos(A0)Iz,2 + 2A12sin(A0)Iz,1+[�A22c

D �2A12cos(A0)Iz,2 + 2A12sin(A0)Iz,1 + [�A2

E 2A11 cosð3b
8 ÞIz;2 � 2A11 sinð3b

8 ÞIz;1 � ½A21 cosð
F 2A11 cosð3b

8 ÞIz;2 � 2A11 sinð3b
8 ÞIz;1 � ½A21 cosð

G 2A12cos(A0)Iz,2 + 2A12sin(A0)Iz,1 + [A22cos

H 2A12cos(A0)Iz,2 + 2A12sin(A0)Iz,1 + [A22cos

I �2A11 cosð3b
8 ÞIz;2 � 2A11 sinð3b

8 ÞIz;1 � ½A21 co

J �2A11 cosð3b
8 ÞIz;2 � 2A11 sinð3b

8 ÞIz;1 � ½A21 co

K 2A12cos(A0)Iz,2 + 2A12sin(A0)Iz,1 + [�A22c

L 2A12cos(A0)Iz,2 + 2A12sin(A0)Iz,1 + [�A22c

M �2A12cos(A0)Iz,2 + 2A12sin(A0)Iz,1 + [A22c

N �2A12cos(A0)Iz,2 + 2A12sin(A0)Iz,1 + [A22c

O 2A11 cosð3b
8 ÞIz;2 � 2A11 sinð3b

8 ÞIz;1 þ ½A21 cosð
P 2A11 cosð3b

8 ÞIz;2 � 2A11 sinð3b
8 ÞIz;1 þ ½A21 cosð

A0 = b � 2c + d, A11 ¼ 2a sinh½18
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�16a2�9b2
p

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�16a2�9b2
p , A

A12 ¼ 2asinh½18
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�16a2�ðb�dÞ2
p

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�16a2�ðb�dÞ2
p , A22 ¼ sinh½18

ffiffiffi
�

q
a ¼ 3

xQ

xRF
, b = 4(3A � s)xQ, c = �4(3a + s

In this table 2xRFa ¼ p
2 where 2a is the p

2 pulse width, xQ is the quadrupolar
qX Total ¼ qE þ qF þ qK þ qL � qM � qG � qO � qP ð13Þ
where qi=E, F, K,. . . is the density matrices for each cycle
shown in Table 3. Using the results in Table 3, Eq. (13)
reduces to
qX Total ¼
�
�4A21 cos

�
3b
8

�
� 4A33 cos

�
b
8

�
� 4A33 cos

�
2c
8

�

�4A33 cos

�
d
8

�
� 4A31 sin

�
3b
8

�
þ 4A32i cos

�
b
8

�

þ4A32i cos

�
c
4

�
þ 4A32i cos

�
d
8

��
Ix;1

þ
�

4A21 sin

�
3b
8

�
� 4A33 sin

�
b
8

�
þ 4A33 sin

�
2c
8

�

�4A33 sin

�
d
8

�
� 431 cos

�
3b
8

�
þ 4A32i sin

�
b
8

�

�4A32i sin

�
c
4

�
þ 4A32i sin

�
d
8

��
Ix;2 ð14Þ
where a, b, c, d, A11, A21, A31 and A33 are given in Table 4.
olar echo pulse sequence for a system evolving under the first order secular

sð3b
8 Þ þ A31 sinð3b

8 Þ�Iy;1 þ ½A21 sinð3b
8 Þ � A31 cosð3b

8 Þ�Iy;2

sð3b
8 Þ þ A31 sinð3b

8 Þ�Iy;1 þ ½A21 sinð3b
8 Þ � A31 cosð3b

8 Þ�Iy;2

os(A0) + A32sin(A0)]Iy,1 + [A32cos(A0) + A22sin(A0)]Iy,2

2cos(A0) + A32sin(A0)]Iy,1 + [A32cos(A0) + A22sin(A0)]Iy,2

3b
8 Þ þ A31 sinð3b

8 Þ�Ix;1 � ½�A21 sinð3b
8 Þ þ A31 cosð3b

8 Þ�Ix;2

3b
8 Þ þ A31 sinð3b

8 Þ�Ix;1 þ ½A21 sinð3b
8 Þ � A31 cosð3b

8 Þ�Ix;2

(A0) � A32sin(A0)]Ix,1 + [A32cos(A0) + A22sin(A0)]Ix,2

(A0) � A32sin(A0)]Ix,1 + [A32cos(A0) + A22sin(A0)]Ix,2

sð3b
8 Þ þ A31 sinð3b

8 Þ�Iy;1 þ ½�A21 sinð3b
8 Þ þ A31 cosð3b

8 Þ�Iy;2

sð3b
8 Þ þ A31 sinð3b

8 Þ�Iy;1 þ ½�A21 sinð3b
8 Þ þ A31 cosð3b

8 Þ�Iy;2

os(A0) + A32sin(A0)]Ix,1 � [A32cos(A0) + A22sin(A0)]Ix,2

os(A0) + A32sin(A0)]Ix,1 � [A32cos(A0) + A22sin(A0)]Ix,2

os(A0) � A32sin(A0)]Iy,1 � [A32cos(A0) + A22sin(A0)]Iy,2

os(A0) � A32sin(A0)]Iy,1 � [A32cos(A0) + A22sin(A0)]Iy,2

3b
8 Þ þ A31 sinð3b

8 Þ�Ix;1 þ ½�A21 sinð3b
8 Þ þ A31 cosð3b

8 Þ�Ix;2

3b
8 Þ þ A31 sinð3b

8 Þ�Ix;1 þ ½�A21 sinð3b
8 Þ þ A31 cosð3b

8 Þ�Ix;2

21 ¼ cosh½18
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�16a2 � 9b2

p
�, A31 ¼ 3b sinh½18

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�16a2�9b2
p

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�16a2�9b2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16a2 � ðb� dÞ2�, A32 ¼ ðb�dÞ sinh½18
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�16a2�ðb�dÞ2
p

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�16a2�ðb�dÞ2
p

)xQ, d = 8sxQ.

coupling constant and we have set c�hB0

kT ¼ 1.
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Similarly, for the magic echo cycles that refocus the
magnetization on the +y axis relative to the receiver we
have

qY Total ¼ qC þ qD þ qI þ qJ � qA � qB � qM � qN ð15Þ

and the total density matrix in the +Y direction reduces to

qY Total ¼ �4A21 cos
3b
8

� �
� 4A33 cos

b
8

� �
� 4A33 cos

2c
8

� ��
�4A33 cos

d
8

� �
� 4A31 sin

3b
8

� �
þ 4A32 sin

b
8

� �
�4A32 sin

c
4

� �
þ 4A32 sin

d
8

� ��
Iy;1

þ �4A21 sin
3b
8

� �
þ 4A33 sin

b
8

� �
� 4A33 sin

2c
8

� ��
þ4A33 sin

d
8

� �
þ 4A31 cos

3b
8

� �
þ 4A32 cos

b
8

� �
�4A32 cos

c
4

� �
þ 4A32 cos

d
8

� ��
Iy;2 ð16Þ

where A21, A31, A32 and A33 are again given in Table 4.
It is important to note that the total density matrix in x

direction has only one deleterious term Ix,2 while the y

direction has Iy,2. The weight of deleterious terms are small
compared to the desirable terms Ix,1 or Iy,1. For instance,
when xQ = 125 kHz, s = 100 ls a pulse p/2 pulse width
of 2a = 2 ls generates deleterious terms Ix,2 and Iy,2 that
are approximately 2 orders of magnitude smaller than the
desired terms Ix,1 and Iy,1. The phase cycling scheme shown
in Table 1 is based on the CYCLOPS phase cycle devel-
oped by Hoult and Richards and is also robust in suppress-
ing ring-down effects of the last pulse, in addition to a
variety of errors associated with imbalances in the receiver
channels and imperfect p/2 pulses [13].

Next, we consider the first order term of the Magnus
expansion and discuss the higher convergence of the magic
echo cycle as compared to the conventional quadrupolar
echo sequence. Following the same development for the
zeroth order term of the Magnus expansion, the first order
term is given by [1]

H 1
int ¼

�i
2tc

Z tc

0

½ eH intðsÞ;
Z s

0

eH intð/Þd/�ds ð17Þ

which we have rewritten as

H 1
int ¼

�i
2tc
½T 0 þ T 1 þ T 2 þ . . . :� ð18Þ

For the magic echo sequence cycle A, the toggling frame
quadrupolar Hamiltonian during each stage of the cycle
shown in Fig. 1 is given in Table 1. The different terms in
the sum have been computed as follows

T 0 ¼
Z s�2a

0

Z t1

0

½ eH 1; eH 1�dt1 dt0 ¼ 0 ð19Þ
T 1 ¼
Z s

s�2a

Z s�2a

0

½ eH 2: eH 1 � eH 1: eH 2�dt2 dt1

¼ �
18ið�2þ

ffiffiffi
2
p
Þa2x2

Q

p
Ix;1 ð20Þ
T 2 ¼
Z 2s�a

s

Z s�2a

0

½ eH 3: eH 1 � eH 1: eH 3�dt3 dt1

þ
Z 2s�a

s

Z s

s�2a
½ eH 3: eH 2 � eH 2: eH 3�dt3 dt2

¼ �
18ið2þ

ffiffiffi
2
p
Þa2x2

Q

p
Ix;1 ð21Þ
T 3 ¼
Z 2sþa

2s�a

Z s�2a

0

½ eH 4: eH 1 � eH 1: eH 4�dt4 dt1

þ
Z 2sþa

2s�a

Z s

s�2a
½ eH 4: eH 2 � eH 2: eH 4�dt4 dt2

þ
Z 2sþa

2s�a

Z 2s�a

s
½ eH 4: eH 3 � eH 3: eH 4�dt4 dt3

¼ 36

p
ia2x2

QIz;1 þ
36

ffiffiffi
2
p

p2
ia2x2

QIy;1

þ 36ð�
ffiffiffi
2
p
þ pÞ

p2
ia2x2

QIx;1 ð22Þ
T 4 ¼
Z 4s

2sþa

Z s�2a

0

½ eH 5: eH 1 � eH 1: eH 5�dt5 dt1

þ
Z 4s

2sþa

Z s

s�2a
½ eH 5: eH 2 � eH 2: eH 5�dt5 dt2

þ
Z 4s

2sþa

Z 2s�a

s
½ eH 5: eH 3 � eH 3: eH 5�dt5 dt3

þ
Z 4s

2sþa

Z 2sþa

2s�a
½ eH 5: eH 4 � eH 4: eH 5�dt5 dt4 ¼ 0 ð23Þ
T 5 ¼
Z 6s�a

4s

Z s�2a

0

½ eH 6: eH 1 � eH 1: eH 6�dt6 dt1

þ
Z 6s�a

4s

Z s

s�2a
½ eH 6: eH 2 � eH 2: eH 6�dt6 dt2

þ
Z 6s�a

4s

Z 2s�a

s
½ eH 6: eH 3 � eH 3: eH 6�dt6 dt3

þ
Z 6s�a

4s

Z 2sþa

2s�a
½ eH 6: eH 4 � eH 4: eH 6�dt6 dt4

þ
Z 6s�a

4s

Z 4s

2sþa
½ eH 6: eH 5 � eH 5: eH 6�dt6 dt5 ¼ 0 ð24Þ
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T 6 ¼
Z 6sþa

6s�a

Z s�2a

0

½ eH 7: eH 1 � eH 1: eH 7�dt7 dt1

þ
Z 6sþa

6s�a

Z s

s�2a
½ eH 7: eH 2 � eH 2: eH 7�dt7 dt2

þ
Z 6sþa

6s�a

Z 2s�a

s
½ eH 7: eH 3 � eH 3: eH 7�dt7 dt3

þ
Z 6sþa

6s�a

Z 2sþa

2s�a
½ eH 7: eH 4 � eH 4: eH 7�dt7 dt4

þ
Z 6sþa

6s�a

Z 4s

2sþa
½ eH 7: eH 5 � eH 5: eH 7�dt7 dt5

þ
Z 6sþa

6s�a

Z 6s�a

4s
½ eH 7: eH 6 � eH 6: eH 7�dt7 dt6

¼ � 36

p
ia2x2

QIz;1 þ
36

ffiffiffi
2
p

p2
ia2x2

QIy;1

� 36ð
ffiffiffi
2
p
þ pÞ

p2
ia2x2

QIx;1 ð25Þ

T 7 ¼
Z 7s

6sþa

Z s�2a

0

½ eH 8: eH 1 � eH 1: eH 8�dt8 dt1

þ
Z 7s

6sþa

Z s

s�2a
½ eH 8: eH 2 � eH 2: eH 8�dt8 dt2

þ
Z 7s

6sþa

Z 2s�a

s
½ eH 8: eH 3 � eH 3: eH 8�dt8 dt3

þ
Z 7s

6sþa

Z 2sþa

2s�a
½ eH 8: eH 4 � eH 4: eH 8�dt8 dt4

þ
Z 7s

6sþa

Z 4s

2sþa
½ eH 8: eH 5 � eH 5: eH 8�dt8 dt5

þ
Z 7s

6sþa

Z 6s�a

4s
½ eH 8: eH 6 � eH 6: eH 8�dt8 dt6

þ
Z 7s

6sþa

Z 6sþa

6s�a
½ eH 8: eH 7 � eH 7: eH 8�dt8 dt7

¼ 18ð
ffiffiffi
2
p
þ 2Þ

p
ia2x2

QIx;1 ð26Þ

Summing all eight terms of the integral, the first order term
of the Magnus expansion for magic echo cycle A reduces to

H 1
intðMEÞ ¼ 1

7s

x2
Q

x2
RF

18
ffiffiffi
2
p

8
Iy;1 �

9

16
ð4

ffiffiffi
2
p
þ ð�2þ

ffiffiffi
2
p
ÞÞIx;1

" #
ð27Þ

By a similar calculation, using the results for the toggling
frame Hamiltonians published in reference [4] for the con-
ventional two pulse sequence, the first order term of the
Magnus expansion reduces to

H 1
intðSEÞ ¼ B

3s
Iy;1 �

A
3s

I z;1 þ
A
3s

Ix;1 ð28Þ

where

A ¼
18a2x2

Q½pð�2þ sinðps
2aÞÞ þ sinðps

a Þ�
p2

ð29Þ

and
B ¼
18a2x2

Q½1þ cosðps
a Þ�

p2
ð30Þ

Together with the zeroth order terms of the Magnus expan-
sion, the above results show that the magic echo cycle is
more robust compared to the conventional solid echo cycle
in refocusing the spin dynamics of quadrupolar spins. The
zeroth order term of the Magnus expansion for the conven-
tional two pulse cycle, reported in reference [4] is given by

H 0
xQ ¼

4axQ

ps
ðIx;2 � Iy;2Þ ð31Þ

Setting the cycle time, 7s, of the magic echo cycle equal to
that of the conventional two pulse cycle, 3s, the zeroth or-
der term of the Magnus expansion for a magic echo given
in Eq. (7) is the same magnitude as that given in the expres-
sion above. However, the zeroth order term of the Magnus
expansion for the conventional cycle contains a sum of two
terms, Ix,2 � Iy,2, whereas that of the magic echo only con-
tains one which does not commute with the equilibrium
state, Iz,1. Hence, the dynamics are more complex for a giv-
en value of a for the conventional two pulse cycle. In addi-
tion, the first order term of the Magnus expansion for a
magic echo is much smaller than that of the two pulse con-
ventional cycle. For example, with a pulse width of
2a = 2.0 ls, xQ = 125 kHz, and equal evolution times
s = 100 ls and s = 300 ls for the magic echo and the solid
echo, respectively, the first order terms reduce to

H 1
intðMEÞ ¼ 103:22Ix;1 þ 115:14Iy;1 ð32Þ

and

H 1
intðSEÞ ¼ �198:94Ix;1 þ 63:32Iy;1 � 198:94Iz;1 ð33Þ

in units of Hertz. With stronger RF power and shorter
pulse spacings, the first order term of the Magnus expan-
sion for the magic echo can be further reduced compared
to that of the conventional two pulse cycle. Consequently,
the magic echo cycle is a more robust sequence for quadru-
polar echo spectroscopy of solids compared to the conven-
tional two pulse quadrupolar echo sequence.

Considering Fig. 1, the magic echo cycle also performs a p
rotation and hence refocuses chemical shift and static field
inhomogeneity simultaneous with the quadrupolar interac-
tion. Previous work associated with refocussing the chemical
shift and static field inhomogeneity with the first order quad-
rupolar interaction in spin-1 quadrupolar echo spectroscopy
using a modified version of the conventional cycle shown in
Fig. 2, has been reported and described by Antonijevic et al.
[14]. Their work showed a phase cycling scheme that also
yields less distorted spectra than the conventional quadrupo-
lar echo sequence. Other cycles developed for refocusing
chemical shift and static field inhomogeneity with the quad-
rupolar interaction have also been reported by Siminovich
[15]. To show that the magic echo cycles outlined here refo-
cus the effects of static field inhomogeneity and chemical
shift, we assume a Hamiltonian H = DxIz,1 and compute
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the zeroth order term of the Magnus expansion. For cycle A,
shown in Fig. 1

H 0
DxðMEÞ ¼ �4

7s
Dx
xRF

Ix;1 þ
2

7s
Dx
xRF

Iy;1

þ 2

7s
Dx
xRF

½xRFðs� 2aÞ þ 2 cos½xRFð2s� aÞ� � 1�Iz;1

ð34Þ

where we have used the following constraints:

2xRFa ¼ p
2

ð35Þ

and

ð2s� aÞxRF ¼ np; n ¼ 1; 2; 3; . . . ð36Þ
For the solid echo cycle shown in Fig. 2 the zeroth order
term for the chemical shift or static field inhomogeneity is

H 0
DxðSEÞ ¼ 1

3s
½�aIx;1 þ bIy;1 þ aIz;1� ð37Þ

where

a ¼ 2Dx
4

p
� 1

� �
aþ s

� �
ð38Þ

and

b ¼ 2Dx 2
4

p
� 1

� �
aþ s

� �
ð39Þ

In cases where the xRF is made larger than Dx, the zeroth
order term of the Magnus expansion for the offset Hamil-
tonian with the magic echo sequence can be made negligi-
ble. In this situation, the magic echo pulse sequence
refocuses static field inhomogeneity and chemical shift ef-
fects completely. This is not the case with the conventional
two pulse sequence, and as a consequence it does not refo-
cus the effects of static field inhomogeneity and chemical
shift even for strong RF pulses.

3. Experimental results

We tested the improved performance of a magic echo
over the two pulse conventional cycle on a deuterated sam-
ple of polyethene. The experiments were performed on a
Tecmag Apollo solid state NMR system with a homebuilt
NMR probe operating at 26.75 MHz. The coil in our
NMR probe had an inner diameter of approximately
2 mm, consisted of 6 turns of 30 AWG copper wire and
had a geometry that is known for producing a homoge-
neous field in the center of the sample [16]. The deuterated
polyethelene sample was purchased from Polymer Source,
Inc. located in Montreal, Canada. The experimental proce-
dure for setting up the experiments involved putting the
system at resonance and tuning the p/2 pulses using well
known techniques in solid state NMR on a sample of deu-
terated water [17]. In the experiments, the dwell time was
set to 0.5 ls, a recycle delay of 10 s was used and 50,000
scans were collected at room temperature. The two pulse
cycle used an 8-step phase cycling scheme that has been
shown to cancel deleterious finite pulse width artifacts to
first order of the Magnus expansion [4]. The spectra
acquired with a magic echo used the 16-step phase cycling
scheme given in Table 1.

Fig. 3 highlights the experimental results of a quadru-
polar echo acquired with the conventional two pulse cycle
and a magic echo cycle for a p/2 pulse length of 1.3 ls
and 1.8 ls. In the experiments, the tau spacings were set
to 104.65 ls for the magic echo and 312.3 ls for the con-
ventional two pulse sequence. This ensures that the com-
plete evolution time following the first excitation pulse is
made the same, so that in both experiments the spin sys-
tem evolves under the quadrupolar interaction and irre-
versible relaxation not refocused by the RF pulses for
an equal amount of time. The results highlight that the
peak signal to noise is larger by a factor of approximately
2 in the magic echo over the solid echo for a 1.3 ls pulse
(referring to Fig. 3A and B). In addition, the signal to
noise in the tail ends of the quadrupolar pattern is larger
by a factor of approximately 5 in the case of a magic echo
compared to the conventional two pulse quadrupolar
echo for this pulse power. This behavior is expected as
discussed in the theoretical section. The zeroth order term
of the Magnus expansion for a Magic echo contains only
one term that does not commute with Iz,1, whereas the
two pulse conventional cycle contains two terms (refer
to Eq. (7) and Eq. (31)), making the dynamics much more
complex for a given value of a. Comparing the first order
terms of the Magnus expansion for 1.3 ls p/2 pulses, the
first order term for the conventional two pulse cycle con-
tains 3 operators that are larger than that of the magic
echo cycle which only contains 2 operators. As a conse-
quence, the magic echo cycle is more robust in refocusing
the spin dynamics of spin-1 quadrupolar nuclei and yields
better looking spectra.

For a longer p/2 pulse equal to 1.8 ls, the experimental
data show that the magic echo cycle produces approxi-
mately the same peak signal to noise as the conventional
quadrupolar echo cycle. However, the outer edges of the
spectra appear to be better resolved with the magic echo
compared to the conventional two pulse cycle. This is also
well predicted by the theoretical analysis presented in the
last section. Again, both the zeroth order and first order
terms of the Magnus expansion for the magic echo are
smaller than that of the conventional two pulse cycle.

Referring again to Fig. 3A and B, the magic echo cycle
also produces a higher signal in the central peak of the
spectrum compared to the two pulse solid echo. This peak
is due to a highly mobile group of the sample, where the
quadrupolar interaction is partially averaged away due to
molecular motion, and has been observed by others in a
similar sample [18]. These results are also in good agree-
ment with what was shown in the theoretical work out-
lined, in that the magic echo cycle refocuses chemical
shift and static field inhomogeneity whereas the conven-
tional two pulse echo does not. Lastly, we found that the
requirement we imposed on the spin locking field for a



Fig. 3. Experimental data highlighting the quadrupolar echo spectra of deuterated polyethelene acquired with a magic echo using p/2 pulse widths of (A)
1.3 ls and (C) 1.8 ls and a conventional quadrupolar cycle using p/2 pulse widths of (B) 1.3 ls and (D) 1.8 ls. Figures B, C and D have all been scaled
relative to the maximum intensity of that in (A), and the phase cycling implemented is discussed in the text. This figure shows that when 1.3 ls p/2 pulses
are implemented, the signal to noise of a magic echo shown in (A) is larger by approximately a factor of 2 in the peaks and approximately 5 in the tail ends
of the spectrum, compared to that of the conventional two pulse quadrupolar cycle shown in (B). For 1.8 ls p/2 pulses, the peak signal to noise for the two
cycles is approximately the same, though the magic echo resolves the tail ends of the powder pattern clearer. For both pulse widths, the center peak of the
signal of a magic echo is larger compared to the center peak of the signal of the conventional two pulse cycle, due to the refocusing of chemical shift and
static field inhomogeneity.
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magic echo cycle, 2s � a = np, did not directly affect any of
the experimental data. We believe that this might be due to
the fact that the entire zeroth order term scales as 1/xRF

and any change in the sin or cosine terms shown in the tog-
gling frame Hamiltonians of Table 2 are negligible com-
pared to the relative size of the RF field.
4. Conclusions

Cycles for performing echo spectroscopy of spin-1 nuclei
in the presence of a quadrupolar interaction, chemical shift
interaction and static field inhomogeneity with a magic
echo are presented. A phase cycling scheme is introduced,
via the formalism of average Hamiltonian theory, for sup-
pressing deleterious finite pulse width artifacts. With the
proper phase cycling and sufficient RF power, magic echo
based quadrupolar echo spectra yield a higher signal to
noise over the familiar two pulse quadrupolar echo cycle
due to higher convergence in the Magnus expansion and
the simultaneous refocusing of chemical shift, static field
inhomogeneity and quadrupolar interactions. Experiments
on deuterated polyethelene indicate an enhancement of
approximately 2 in peak signal to noise and approximately
5 in the tail ends of the powder pattern. It is expected that
the magic echo cycles reported here will be useful for a
broad range of applications of quadrupolar echo spectros-
copy of polymers, and other solid and semisolid systems.
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